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Abstract  

Silicon carbide (SiC) ceramics are being used and considered for a number of room 
temperature wear and optical applications where strength and fracture toughness are critical 
design parameters. Thus, there is a requirement for high-quality tensile strength and Weibull 
data for this class of materials. This report will present room temperature uniaxial tensile 
strength data, single-edge precracked beam (SEPB) fracture toughness (KIC) data, and 
fractographic analysis for several hot-pressed (HP) SiC ceramics. Strength and K,c data will be 
related to the micro structure and flaw population of the HP SiC materials studied. 
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1. Introduction 

The high elastic modulus, high hardness, excellent wear and corrosion resistance, low density, 

and good specific strength of silicon carbide (SiC) have led to its use in room temperature wear parts, 

optical components, and armor applications. The increasing use of SiC ceramics in such applications 

demands reliable strength statistics and accurate fracture toughness data as critical design parameters. 

Such information also provides valuable feedback to materials processing, which can lead to 

increased product quality and reliability. While much data exist on the strength and toughness of 

sintered SiCs [1-3] and some data are available on an older hot-pressed (HP) version of SiC [4], 

little data exist on newer HP varieties. 

This work presents a detailed investigation of the room temperature tensile and flexural strength, 

failure statistics, and room temperature fracture toughness of two different types of HP SiC 

materials. Observations on the strength limiting flaws are based on fractography of tensile 

specimens. The possible effects of varying machining practices on the strength and Weibull 

statistics data were examined by having sets of specimens machined by two different vendors. 

Weibull statistics obtained from the tensile specimens were employed to predict strength values 

obtained from four-point bend tests. One of the two materials was provided as both small and very 

large billets, thus the effects of billet size could be studied. Increasing billet size has been 

demonstrated to affect the strength of Si3N4 [5], thus it is important to ascertain whether such a 

phenomenon is present in HP SiC. 

2. Materials 

The SiC materials used in this study were Cercom* PAD SiC-B and PAD SiC-N, which will be 

hereafter designated as SiC/B and SiC/N, respectively. These SiCs were hot-pressed into 15.24- x 

15.24- x 2.54-cm billets. One additional Cercom PAD SiC-B material was fabricated into a 31.75- x 

Cercom, Inc., Vista, CA. 



31.75- x 17.27-cm large billet and will be designated as SiC/B LB. Both PAD SiC-B and PAD 

SiC-N materials are reported [6] to have almost identical mechanical and physical properties except 

that PAD SiC-N has improved impact and dynamic properties. The manufacturer reported a bulk 

density of 3.2 g/cm3, average grain size of 4.0 urn, four-point flexure strength of 655 MPa, Weibull 

modulus of 18, elastic modulus of 455 GPa, Poisson's ratio of 0.14, and fracture toughness of 

5.2 MPa/m [7]. X-ray diffraction patterns obtained from powdered samples indicated that the major 

phase was hexagonal a SiC. A trace of a rhomobohedral a SiC was present in the SiC/B, whereas 

no such phase was present in the SiC/N. Direct detection of a cubic ß SiC phase was unsuccessful 

because of overlapping peaks between the a and ß phases. However, comparison of the measured 

integrated intensities and those listed in the JCPDS cards indicated no JCPDS presence of ß SiC 

phase in either material. 

3. Experimental Procedure 

Two different highly reputable machining vendors were used to fabricate SiC/B and SiC/N 

modulus of rupture (MOR) and tensile specimens. Vendors A and B prepared 30 B-type MOR 

specimens from each material according to ML-STD- 1942a [8]. Vendor A prepared 16 tensile 

specimens from both SiC/B and SiC/N, whereas Vendor B prepared 15 and 14 tensile specimens 

from SiC/B and SiC/N, respectively. The tensile specimens were fabricated by grinding the 

specimens circumferentially while meeting the same surface finishing procedures and requirements 

as the MOR specimens. Nominal dimensions of the tensile specimens were 8.8 mm in diameter and 

120 mm in length. Both the MOR and tensile specimens from SiC/B LB were fabricated from the 

inside portion of the billet by Vendor A. 

Tensile tests were performed at room temperature using a self-aligning hydraulic testing 

apparatus developed by Baratta and Driscoll [9] with a simplified specimen geometry described by 

Hermansson et al. [10], which is a simple right cylinder, nominally 9 mm in diameter and 120 mm 

long. On each end of the tensile specimens, 40 mm are inserted into steel pistons and adhesively 



bonded in place with a high-strength epoxy.* The specimen-piston assembly is inserted into the 

pressure chamber of the hydraulic tester." Pressure is applied and increased until the specimen in 

broken apart by the hydraulic pressure acting against the pistons. A detailed description of this test 

method may be found in the Katz, Lucas, and Toutanji [3], Hermansson, Adlerborn, and Burstrom 

[10], Lucas [11], Toutanji [12], and Katz et al. [13]. 

Lucas [11] and Toutanji [12] describe a technique for correcting small amounts of eccentricity 

in loading. All data presented in this report were subjected to such correction procedures. Typically, 

in this study, such corrections represent only 2% of the nominal stress (maximum of 5%). Due to 

the effects of a stress concentration at the specimen-to-piston bond transition, data from specimens 

that fractured within one-half the radius of the specimen from the epoxy line were not considered 

valid tests. Such data, however, can be used as censored (or suspended) data points from the 

Weibull statistics calculation [14], as will be described in the following paragraphs. 

The fracture surface of tensile specimens was examined by low-magnification optical and high- 

magnification scanning electron microscopy (SEM). SEM fractography and elemental analysis were 

carried out using a JEOL 840A instrument equipped with a KEVEX energy dispersive x-ray 

analyzer. The tensile fracture surfaces were ultrasonically cleaned and coated with a thin layer of 

carbon or Au-Pd alloy to prevent charging. 

Four-point bend tests were carried out in accordance with MIL-STD-1942a [8] using a fully 

articulating fixture having 20-mm inner and 40-mm outer spans. An Instron screw-driven 25-kN 

load-capacity universal test machine with a 5-kN capacity load cell was used. All specimens were 

fractured at a displacement rate of 0.5 mm per minute. Fractographic analysis of the MOR 

specimens will not be reported in this study. 

ARALDITE AV 118, Ciba Geigy Corp., East Lansing, ML 
' ASCERA Hydraulic Tensile Tester, Robertsfors, Sweeden. 



Weibull statistical data for MOR and tensile tests were obtained from the SiC/B and SiC/N 

specimens machined by Vendors A and B. One additional data set for each test method was obtained 

from the SiC/B LB specimens. Weibull modulus, m, and Weibull characteristic strength, o^, were 

estimated using the two-parameter Weibull equation [15] by fitting the data using the maximim 

likelihood method [16]. Additionally, the effects of performing a censored data analysis on the 

tensile Weibull data was evaluated following the procedure described in Abernethy et al. [14]. In 

a censored data Weibull plot, the existence of the invalid tests is taken into account in ranking the 

data. This, therefore, affects the values for the probability of failure for each valid test. 

Fracture toughness, Kc, estimation was performed only on the tensile specimens having internal 

failure initiating flaws with fully developed fracture mirrors [17]. Raw size was measured from high 

magnification SEM photomicrographs. Fracture toughness was estimated following the Sneddon 

solution [18]: 

Kic = 2oc(ac/7l)1/2> W 

where KIC is the fracture toughness, ac is the fracture stress, and a^. is one-half the critical flaw size. 

Broken halves from the four-point MOR tests were used for SEPB KIC tests using the 

experimental technique described in Nose and Fujii [19], Bar-On [20], and Quinn [21]. The 

specimens were fractured in three-point bending at a displacement rate of 0.5 mm per minute using 

an Ihstron 5-kN load capacity universal testing machine with a 0.5-kN load cell. Fracture toughness 

was calculated from Srawley's stress intensity solution [22] using a span-to-width ratio of 4 and 

following the precrack length measurement procedure described in ASTM STD E399 [23]. 

4. Results and Discussion 

4.1 Tensile Strength Distribution. Table 1 summarizes the Weibull statistics and failure 

initiation sites for the tensile tests. The data show that a significant (~11%) variation in tensile 
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Table 1. Tensile Weibull Statistics and Failure Initiating Flaw Population Data 

Material 

Not Censored Censored Failure Origin 

Oc„(MPa) m No./Sus. OcH(MPa) m No./Sus. vf/ss/s 

SiC/B LB 304 9.6 16/0 306 9.8 18/2 10/3/5 

SiC/B VA 399 16.6 14/0 399 16.7 16/2 1/0/15 

SiC/B VB 357 19.0 13/0 357 19.1 15/2 0/3/12 

SiC/N VA 359 10.9 14/0 367 10.1 16/2 4/2/10 

SiC/N VB 318 15.7 8/0 325 16.3 14/6 2/4/8 

Notes: 
vf - volume flaws. 
s  - surface flaws. 
Sus. = number of suspended items. 
VA - vendor A. 

ss = subsurface flaws. 
No. - total number of specimens. 
LB = larger billet. 
VB - vendor B. 

strength can result from machining variation. More than 50% the SiC/B LB specimens failed from 

internal volume flaws. SiC/B specimens, on the other hand, predominantly failed from either surface 

or subsurface flaws regardless of the machining vendor. The greater prevalence of internal failure 

origins combined with the much lower characteristic strength and Weibull modulus (m) of the large 

billet material is indicative or a significant increase in volumetric, process-related flaws, as compared 

to the smaller billets. Of the specimens from the smaller billets, only 1 of 31 valid failures of SiC/B 

occurred from an internal flaw, whereas SiC/N material had 6 internal flaws for 30 valid tests. The 

greater frequency of internal flaws coupled with the slightly lower value of a^ and m for the SiC/N 

material may be explained by the fact that this material is a more recent development than SiC/B 

and, thus, may be less "process mature." Nevertheless, the tensile strength observed in both of these 

HP SiCs is impressive as compared to previously reported tensile strengths of SiC. Miller et al. [4] 

reported an average room temperature tensile strength of 270 MPa for an early 1970s HP SiC 

(NC-203).* Reported characteristic tensile strength of sintered SiCs ranges from 213 MPa with an 

"m" of 7.5 [24] to 307 MPa with an "m" of 9.4 [3]. 

Norton Co., Worcester, MA. 



The censored data concept [14] was used to readjust ranking of data points by accounting the 

specimens which failed within one-half of the radius from the glue line. The results are summarized 

in Table 1. Censored Weibull statistics were essentially the same as those obtained from the 

uncensored data. Since the differences between using uncensored-vs.-censored data analyses were 

minimal, uncensored values were used in making Weibull predictions, in keeping with past practice 

[13]. Figure la presents the uncensored tensile Weibull distributions of the SiC materials used in 

this study. 

4.2 Modulus of Rupture (MOR) Strength Distribution. Results of the MOR Weibull strength 

statistics are presented in Table 2. Higher values of characteristic strength and Weibull moduli were 

observed compared with those obtained from tensile tests. This observation is expected based on 

the well-known stressed volume effects on Weibull parameters. Increased values of Weibull 

modulus, m, were also observed for the MOR specimens. The MOR strength varied less as a 

function of machining vendor than did the tensile strengths. This observation may be related to the 

fact that the machining parameters for fabrication of MOR specimens are well-established, whereas 

similar parameters are needed to be established for the fabrication of tensile specimens. Figure lb 

presents the Weibull plots for the MOR specimens evaluated in this study. 

43 SEPB K,c Test Fracture toughness data for the SiC materials used in this study are listed 

in Table 3 along with the values taken from the literature [17, 25-27]. Convincing evidence of 

significantly improved fracture toughness of newer grades of HP SiC, as compared to earlier HP or 

sintered materials, is evident. Hot-pressing of SiCs into very large billets, however, tends to 

decrease not only the strength but also the fracture toughness as evidenced by KK values measured 

from SiC/B LB and SiC/B materials. A marginal improvement in fracture toughness was exhibited 

by the SiC/B compared with the value obtained for the SiC/N. Again, the higher standard deviation 

in measured toughness value of the SiC/N material supports the earlier stage of material maturity 

described in the previous section. The "new" version of the SiC/B material evaluated in this and 

previous work [25] shows a marked improvement in K^ over the "older" version of the same 
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Figure 1. Weibull Plots of the Uncensored (a) Tensile and (b) Four-Point Flexure Tested 
Specimens for the Five Test Conditions Studied. 

material [26]. The fracture toughness of SiC/B and SiC/N is now of the same order as NC-132* 

Si3N4 [28]. 

4.4 Estimation of KIC From Fractography. The tensile fracture surfaces of the SiC/B LB 

material yielded 10 samples that failed from volume defects, had well-developed fracture mirrors, 

and met the other cirteria specified in Katz et al. [17]. Similarly, the SiC/N material produced five 

samples meeting these conditions. The SiC/B samples only yielded one such fracture surface, which 

was not analyzed, as no statistics could be developed from a single estimation. Figure 2 shows a 

Norton Co., Worcester, MA. 



typical failure origin in the SiC/B LB material. The estimated values of KIC were 4.1 ± 0.8 MPa/m 

and 4.3 ± 0.4 Mpa/m for the SiC/B LB and SiC/N materials, respectively. These estimated values 

differ by 2.5% and 12% from the SEPB measurements. Such variances are comparable to those 

observed for other materials evaluated in this manner [17]. 

Table 2. Weibull Strength Data From the Four-Point MOR Specimens 

Material o-c„(MPa) m No. of Specimens 

SiC/B LB 460 10.5 30 

SiC/B VA 560 27.3 30 

SiC/B VB 560 26.7 30 

SiC/N VA 556 22.8 30 

SiC/N VB 529 26.7 30 

Table 3. Krc Comparison of SiC Materials 

Material Manufacturer Method Mean KIC Reference 

HP SiC/B LB Cercom SEPB 4.00 ±0.27 This Study 

HP SiC/Ba Cercom SEPB 5.09 ±0.28 This Study 

HP SiC/N Cercom SEPB 4.92 ± 0.69 This Study 

HP SiC/Ba Cercom SEPB 4.18 ±0.61 Choetal. [25]     | 

HP SiC/Ba Cercom Chevron Notch 4.57 ±0.49 Choetal. [25] 

HP SiC/Ba Cercom Indentation Strength 4.01 ±0.29 Cho et al. [25] 

HP SiC/Bb Cercom SEPB 2.20 ±0.60 Mariano et al. [26] 

Sintered SiC Dow SEPB 3.11 ±0.33 Katz et al. [17]      | 

Sintered SiC Ford SEPB 2.30 ±0.25 Woodillaetal. [27] I 

•New 
"Old 



(a) 

(b) 

Figure 2. SEM Fractographs of Specimen of SiC/B LB (a) Volume Flaw, Fracture Surface 
Shown Failure Origin With Distinct Circular Mirror, Mist, and Hackle 
Regions; (b) Failure Origin Consists of a Cluster of Large Grains. 

4.5 Prediction of MORWeibull Strength From Tensile Weibull Parameters. Theoretically, 

Weibull characteristic MOR strength values can be predicted from tensile Weibull parameters by 

equating the unit volume characteristic strength [29] of tensile and flexure specimens. Table 4 

presents predicted and measured strength values in this study. The instance of 13% disagreement 

between predicted and measured MOR values may indicate that fracture occurs from different flaws 



(most likely, surface flaws of different orientations resulting from axial vs. circumferential) than in 

the case of the tensile bars. In all instances, the measured MOR values are higher than the ~400 MPa 

previously reported by Mariano and Bar-On [26]. 

Table 4. Predicted and Measured Weibull Characteristic MOR Strength 

Material 

Tensile MOR 

Difference (%) 
0"cH m Predicted Measured 

SiC/B LB 304 9.6 524 460 -14 

SiC/B VA 399 16.6 565 560 -1 

SiC/B VB 357 19.0 487 560 13 

SiC/N VA 359 10.9 587 556 -6 

SiC/N VB 318 15.7 458 529 13 

5. Conclusions 

The conclusions of this study are as follows: 

(1) Tensile strength of both HP SiC/B and SiC/N is significantly higher than previously 

reported variants of SiC. Similarly, the fracture toughness of these grades of SiC is also 

higher and is comparable to NC-132 grade of HP Si3N4. 

(2) Scaling up the volume of HP SiC billets by - 30 x was observed to decrease average tensile 

strength by ~ 15-24%, and MOR by -18%. 

(3) Machine-shop-to-machine-shop practice variation can lead to an -11% difference in 

measured tensile strengths, as opposed to only a 0-5% variation in MOR values. 

10 



(4) Using a censored-vs.-uncensored Weibull analysis made no significant difference for any 

of the five conditions evaluated. 

(5) Estimation of fracture toughness by fractographic analysis yields values within 12% of 

SEPB fracture toughness measurements. 

11 
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